An Intrinsic Characterization of Bonnet Surfaces Based on a Closed Differential Ideal
نویسندگان
چکیده
منابع مشابه
An Intrinsic Proof of the Gauss-bonnet Theorem
LetM be a 2-dimensional compact oriented Riemannian manifold. We start by choosing an open subset U of M on which we can define an orthonormal frame (E1, E2). Recall that this means that E1, E2 are vector fields on U such that 〈Ei, Ej〉 = δij (the Kronecker delta), where 〈·, ·〉 denotes the Riemannian metric on M . We sometimes call (E1, E2) a moving frame or repère mobile in French, and this met...
متن کاملNotes on amalgamated duplication of a ring along an ideal
In this paper, we study some ring theoretic properties of the amalgamated duplication ring $Rbowtie I$ of a commutative Noetherian ring $R$ along an ideal $I$ of $R$ which was introduced by D'Anna and Fontana. Indeed, it is determined that when $Rbowtie I$ satisfies Serre's conditions $(R_n)$ and $(S_n)$, and when is a normal ring, a generalized Cohen-Macaulay ring and finally a filter ring.
متن کاملNumerical Treatment of Geodesic Differential Equations on Two Dimensional Surfaces
This paper presents a brief instructions to nd geodesics equa-tions on two dimensional surfaces in R3. The resulting geodesic equations are solved numerically using Computer Program Matlab, the geodesics are dis-played through Figures.
متن کاملIntrinsic Features on Surfaces
The detection of stable feature points is an important preprocessing step for many applications in computer graphics. Especially, registration and matching applications often require those points and depend heavily on their quality. In the 2D image case, scale space based feature detection is well established and shows unquestionably good results. For this reason, we generalize a scale space to...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometry
سال: 2014
ISSN: 2314-422X,2314-4238
DOI: 10.1155/2014/715679